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Abstract. Although there is no proof of the validity of the method, in a lot of papers, one computes the
Second derivative of the the experimental fusion cross section multiplied by the energy to extract the fusion
barriers directly from the experiment. The purpose of this paper is to check the consistency of the method,
as experimental points are sandwiched inside their error bars. We therefore analysed the validity, by giving
ourselves a cross section σ(E), resulting from the coupled channel calculation code ECIS, upon which, in
spite of the complexity of the calculations, we have full control. We took these calculated points as the
“experimental” ones and we altered them by multiplication by small random numbers. This is intended
to simulate the error bars, of which we want to examine the influence on the fusion barriers. We find that
in spite of the rough predictions yielded by the second derivative method, this task requires data with
a precision difficult to reach. Furthermore, a careful check of the predictions of this method for coupled
channels calculations shows that, due to the errors bars, this approach adds spurious results.

1 Introduction

When two nuclei a and A collide they may form a third
one C∗ such that fusion occurs

a+A =⇒ C∗ =⇒ b+B∗

The incident energy E permits to subdivide the forma-
tion of the system C∗ in two regimes, one under and one
above the repulsive potential barrier between the two nu-
clei. Above the barrier, the incident energy is high enough
to overcome the repulsion, the nuclei collide and then un-
dergo a decay. Under the barrier, the reaction is classically
forbidden, but they may tunnel through the barrier and
fuse.

The problem is to find this barrier, and/or, if several
barriers are present, how they are distributed. It is im-
portant to determine the barrier(s) limiting the two en-
ergy regimes, as they govern the fusion cross section, the
obtention of new species of nuclei etc., but barriers are
not directly observable and one needs to develop indirect
methods to get them. Accordingly, a lot of work [1–4], have
been devoted to these questions, impulsed by an analytic
expression for the fusion cross section, valid above and un-
der the barrier, derived in 1973 by Wong [5]. To locate the
barriers, Rowley and collaborators [6] presented a method
which consists in associating the barriers to the peaks of
the second derivative with respect to E, of E times the
fusion cross section. They add that their method, when
using the experimental fusion cross sections data, will lead
directly to the barriers.

Our purpose was to analyse the validity of this claim
which seemed reasonable although needing a clear proof.
We show [7] however that due to the unavoidable error
bars, very high precision data are required in order to
extract fusion barriers, therefore leaving open the question
of confidence in the method.

2 The second derivative approach

In a purely classical way, Weisskopf [8] in 1937, derived
an expression for the fusion cross section σ(E) valid when
the incoming energy E is much greater than the height of
the barrier B

σ(E) =
πR2

E
(E −B) E À B (1)

R is the position of the barrier i.e. at R the total (nuclear
plus Coulomb) scattering potential takes a value

B = V (R).

For a quantal system, the probability for compound nu-
cleus formation, i.e. the fusion cross section is

σ(E) =
π

k2

∞∑
l=0

(2l + 1)Tl(E) (2)

where Tl(E) is the fusion probability for the l-th partial
wave and k2 = 2µE/h̄2 with µ the reduced mass of the
system.
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Wong [5] introduced the following approximations in
order to obtain σ(E):

i) Around the top R, one may approximate V(r) by its
Taylor expansion, and replace the total interaction by the
following parabola

V (r) ≈ B − µω2

2
(r −R)2

with curvature

ω2 = −V
′′

µ

∣∣∣
R
> 0.

Adding the centrifugal barrier, V(r) becomes Vl(r)
such that

Vl(r) ≈ B −
µω2

2
(r −R)2 +

h̄2

2µr2
l(l + 1) (3)

with the only l-dependence coming only from that last
term since Wong [5] has shown that R and ω are insensi-
tive to l .

ii) Moreover, for Tl(E) Wong [5] takes the expression
derived by Hill and Wheeler [9]

Tl(E) =
[
1 + exp

( 2π
h̄ω

(Vl(R)− E)
)]−1

(4)

and replaces the discrete sum over l in (2) by an integral.
This leads to the well known Wong formula describing
approximately the fusion cross section for any E. It gen-
eralize (1) and extend its range of validity around and, to
some extent, under the barrier.

σ(E) =
πR2

E

h̄ω

2π
ln
[
1 + exp

( 2π
h̄ω

(E −B)
)]

(5)

iii) Far beyond the barrier, expression (5) gives back
(1)

σ(E) =
πR2

E
(E −B) E À B

and under the barrier we get

σ(E) =
πR2

E

h̄ω

2π
exp

( 2π
h̄ω

(E −B)
)

E ¿ B. (6)

It is easy to analyse the properties of (5). In particular,
noticing that the second derivative of (1) is

d2(Eσ)
dE2

= πR2δ(E −B) (7)

Rowley et al. [6] using (5) generalized it to

d2(Eσ)
dE2

= πR2 2π
h̄ω

ex

(1 + ex)2
(8)

with x = (2π/h̄ω)(E−B). These two last expressions, both
strongly peaked around E = B, are formally equivalent.

For the 32S+64 Ni system, they found [6] a good agree-
ment between the expression (8) and an optical model
calculation. However, Dasso [10] pointed out that the ap-
proximate character of this type of method imposes limits
on the possibility to extract precise nuclear structure in-
formation.

3 Accuracy of the method

In their paper, Rowley et al. [6], claim that barriers can
be obtained via the second derivative of the set of relevant
experimental points. On one hand, the numerical compu-
tation of derivatives [11] may already be rather imprecise,
even for well-behaving analytical functions. On the other
hand, the experimental points are given with their errors
bars. In other words a dot has some probability to be
found sandwiched anywhere inside its error bar.

To check the sensitivity of the second derivative
method, we took a cross section resulting from the coupled
channel calculation code ECIS [12] upon which, in spite
of the complexity of the calculations, we have full control,
namely where the fusion barriers are, what are the states
participating to the interaction (as we introduce them in
the code) etc. This procedure allows us to know the sub-
Coulomb fusion barriers with a very good accuracy: we
know our input and know what must be the output.

We computed the reaction cross section σfus, for the
32S +24 Mg system, using Raynal [12] code ECIS with
the optical potential parameters given by Rhoades-Brown
et al. [13]. Therefore we knew where the fusion barrier
was expected to lie, as the parameters used by these au-
thors originate from the empirical formulas proposed by
Broglia and Winter [14]. In our calculations the only chan-
nel present is fusion since all the flux whose energy is
higher than the barrier is absorbed [15]. Indeed, the sec-
ond derivative of E.σfus, shows a peak (solid line in Fig. 1)
that we interpret as a barrier, at an energy in full agree-
ment with what was expected from our input. This is also
along the result of Rowley et al. [6] mentioned earlier on
their 32S +64 Ni system computations.

To take into account the error bars on our “experimen-
tal” data, we then modified the ECIS code output σfus by
a small percentage into

σ = σfus(1 + r/K) (9)

Here r is a random number between −0.1 and +0.1
and K will be defined shortly. Obviously, the resulting
cross section σ will not exhibit the smooth shape of σfus.
The random shift of the “dots” inside their error bars was
a way to represent the uncertainty linked to the measure
and a way to see if and how the peaks move as (it is
claimed that peaks correspond to barriers).

We compute now (E.σfus)′′ and (E.σ)′′. The results
are displayed in the left hand side of Fig. 1, where the
solid line represents (E.σfus)′′ . We see that a very small
alteration of σfus, induces a chaotic behavior on (E.σ)′′
(dots) at higher energies. The effect of the noise being
overwhelming at the higher energies, we have attenuated
its magnitude by the extra factor 1/K, K = 10, to render
the results presentable (ansatz 1 on Fig. 1). Note that with
K = 10, the alteration is smaller than 1%. To regularize a
little more σ we modified (9) by transforming K into KE

such that
σ = σfus(1 + r/KE) (10)

where KE is proportional to the incident energy. As well
known, for a constant acquisition time, the higher the en-
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Fig. 1. Comparison of the two ansatz described in (9) and (10) respectively to obtain the barrier with a pseudo-experimental
cross section. The solid line and the dots represents (E.σfus)

′′ and (E.σ)′′ respectively

Fig. 2. Results of calculations taking into account the excited states of 24Mg (left) and with a modified value for the 4+ (right)

ergy the smaller the error bar. We see (right hand side
of Fig. 1) that the overall result is improved. In fact, the
ansatz of 10 (ansatz 2 on Fig. 1), kills almost all the noise
and smoothens the cross sections especially at the higher
energies.

The striking feature is that the peak remains in any of
the two altered situations. One is then tempted to argue
in favor of the method. But, in fact, the agreement, overall
before the peak, is an artefact. Although we are dealing
with cross sections obtained from a coupled channel code,
the analogy with the Wong formula will explain the situa-
tion. At E << B, the decrease of (Eσ)′′, is governed by the
decrease of the exponential present in (6). This cannot be

balanced by the linear increase of E. In other words, the
exponential term will make (Eσ)′′ ≈ 0 as long as E−B is
negative enough. Around E− B, (6) presents a peak and
then, for E − B > 0 , we obtain just the cahotic behav-
ior of Fig. 1 due to the difficulty to obtain accurately the
derivative of that exponentially increasing function. This
have been also outlined by Dasso [10].

4 Influence of the excited states

Taking up the second derivative method [6], we have in-
vestigated the influence of the coupling to the lowest ex-
cited states of 24Mg scattering with 32S. Again we get σfus
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Fig. 3. The spectrum of 24Mg used for ECIS calculations

from the Raynal [12] code ECIS [15] with :

σfus = σreact −
∑

σinel

The left hand side of Fig. 2 shows the unmodified
(solid line) and smoothed (dashed curve) computations
of (E.σfus)′′ and (E.σ)′′ respectively. Here by smoothed
we mean dividing by the KE factor like in (10). We see on
this figure

i) three bumps at respectively 62 MeV, 68 MeV and 74
MeV occuring when using the 24Mg low-energy spectrum
of Fig. 3 ,

ii) a series of bumps, some bearing a physical meaning
and some generated by the noise.
To examine the nature of the very small bump that occurs
on the solid line at 74 MeV, we have lowered the 4+ state
at the artificial energy of 2.13 MeV, instead of 4.13 MeV.
The resulting peaks are displayed on the right hand side of
Fig. 2. While the peak at 62 MeV remains rather steady,
there is some interplay between the peaks at 68 and 74
MeV. On the other hand, a very small noise, indeed, in-
troduces some unphysical peaks (dashed lines). As their
positions are also perturbed by the modification of the en-
ergy of the 4+ level, when we perturbate the physical ones,
we have no way to drop off the spurious bumps, outlining
the difficulty to make any clear cut interpretation.

5 Conclusion

As a conclusion, this second derivative method analyzed
here, leaves pending some indeterminations. There is no

justification for the procedure. Although giving rough pre-
dictions, the relation between the peaks and the coupled
channels calculations is more intricate than expected. Ac-
tually, the extraction of barriers directly from experiments
requires data with a precision (< 1%) difficult to obtain,
outlining the need for more accurate methods to deter-
mine the barriers. Finally, here we have neither statistical
nore systematic errors. The only errors present here are
just the ones generated on purpose by the random num-
bers.

Thanks are due to Dr. H. Orland for fruitful comments.
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